

R.M.K. ENGINEERING COLLEGE RSM Nagar, Kavaraipettai – 601 206

Department of Electrical and Electronics Engineering

List of courses offered during 2020-21(Odd Semester)

Sl. No.	Semester	Theory/Practical	Course Code / Course Name
1	3	Theory	MA8353 – Transforms and Partial Differential
		-	Equations
2	3	Theory	EE8351 - Digital Logic Circuits
3	3	Theory	EE8391 – Electromagnetic Theory
4	3	Theory	EE8301 – Electrical Machines-1
5	3	Theory	EC8353– Electron Devices and Circuits
6	3	Theory	ME8792 - Power Plant Engineering
7	3	Practical	EC8311- Electronics Laboratory
8	3	Practical	EE8311- Electrical Machines Laboratory – I
9	5	Theory	EE8501 – Power System Analysis
10	5	Theory	EE8551- Microprocessor And Microcontroller
11	5	Theory	EE 8591 – Digital Signal Processing
12	5	Theory	EE8552– Power Electronics
13	5	Theory	CS 8392 – Object Oriented Programming
14	5	Theory	OAN551- Sensors and Transducers
15	5	Practical	EE8511- Control and Instrumentation Laboratory
16	5	Practical	HS8581 - Professional Communication
17	5	Practical	CS8383- Object Oriented Programming Laboratory
18	7	Theory	EE8701 – High voltage engineering
19	7	Theory	EE8702 – Power system operation and control
20	7	Theory	EE8703– Renewable Energy Systems
21	7	Theory	GE 8077- Total Quality management
22	7	Theory	OCS752 –Introduction to C programming
23	7	Practical	EE6711 - Power System Simulation Lab
24	7	Practical	EE6712- Comprehension Laboratory Lab

Course outcomes- 2019-2020 (odd semester)

Third Semester

Course	Course Code: MA8353		
Course	Course Name: Transforms And Partial Differential Equations		
CO	Course outcome(CO) - Statements		
CO – 1	Understand how to solve the given standard partial differential equations.		
CO – 2	Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.		
CO – 3	Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.		
CO – 4	Understand the mathematical principles on Fourier transforms would provide them the ability to formulate and solve some of the physical problems of engineering.		
CO – 5	Construct z- transform and find inverse z-transform techniques for discrete time systems.		
CO – 6	Use the effective mathematical tools for the solutions of difference equations by using Z transform techniques for discrete time systems.		

Course Code:EE8351 Course Name: Digital Logic Circuits		
CO	Course outcome(CO) - Statements	
CO – 1	Ability to interpret number systems and simplify logical expressions	
CO – 2	Ability to construct combinational logic circuits	
CO – 3	Ability to develop the synchronous sequential circuits	
CO – 4	Ability to develop the Asynchronous Sequential Circuits	
CO - 5	Ability to analyze the Programmable Logic Devices	
CO-6	Ability to develop VHDL programs to design digital logic circuits	

Course Code: EC8353 Course Name: Electron Devices And Circuits		
CO	Course outcome(CO) - Statements	
CO – 1	Explain the structure, characteristics of various diodes and their applications	
CO – 2	Analyse the operation of transistors and thyristors	
CO – 3	Analyze the small signal models transistor amplifier	
CO – 4	Examine/ Construct multistage amplifiers	
CO – 5	Describe the benefits of negative feedback for amplifier circuits	
CO-6	Explain the structure, characteristics of various diodes and their applications	

Course	Course Code: EE8301		
Course Name: Electrical Machines - 1			
CO	Course Outcome(CO) - Statement		
CO – 1	Understand the laws governing the analysis of magnetic circuits and apply the same in simplifying complicated magnetic circuits and calculating various parameters of the magnetic circuit.		
CO – 2	Understand the working principle of transformer and calculate the performance parameters of a transformer through various tests by applying various conducting suitable tests.		
CO - 3	Understand the working principle of rotating machines and apply the basic laws governing magnetic circuits for calculating the force/torque experienced by an electromagnetic system.		
CO – 4	Understand the construction and working principle of DC machines		
CO – 5	Calculate various performance parameters of the machine, when running as a generator, by conducting suitable tests.		
CO-6	Apply the laws governing the working of a motor for calculating the performance parameters by conducting suitable tests.		

Course	Code: EE8391 Course Name: Electromagnetic Theory
CO	Course outcome(CO) - Statements
CO – 1	Express the basic mathematical concepts related to electromagnetic vector fields
CO – 2	Correlate the basic concepts of electrostatics, electric potential, energy density with their applications
CO - 3	Discuss the basic concepts of magneto statics, magnetic flux density, scalar and vector potential and its applications
CO – 4	Differentiate the methods of EMF generation and Maxwell's equations
CO – 5	Express the basic concepts of electromagnetic waves and characterizing parameters
CO - 6	Analyze the Electromagnetic fields and apply them for the design of electrical equipment's and systems.

Course Code: ME8792 Course Name: Power Plant Engineering

Course	Course Name: Tower Train Engineering
CO	Summarize the layout, construction and working of the components inside a thermal power plant.
CO – 1	Analyze the different types of steam cycles and it's efficiencies in a steam power plant.
CO – 2	Explain the basic working principles of gas turbine, diesel engine and combined cycle power plants. Define the performance characteristics and components of such power plants.
CO – 3	Describe the working of Renewable Energy based Power plants.
CO – 4	Discuss the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.
CO – 5	List the principal components and types of nuclear reactors
CO-6	Summarize the layout, construction and working of the components inside a thermal power plant.

Laboratory

EC8311	Electronics Laboratory
CO	Course outcome(CO) - Statements
CO – 1	Explain the characteristics of semiconductor devices
CO – 2	Analyze astable and monostable multivibrators
CO – 3	Develop differential amplifiers using FET
CO – 4	Infer frequency and phase measurements using CRO
CO – 5	Construct RC, LC phase shift oscillators
CO - 6	Experiment with passive filters

Course code : EE8311 Course Name: Electrical Machines Laboratory - I		
CO	Course outcome(CO) – Statements	
CO – 1	Ability to understand and analyze DC Generator	
CO – 2	Ability to understand and analyze DC Motor	
CO – 3	Ability to understand and analyse Transformers.	

Fifth Semester

Course Code: EE8501		
Course Name: Power System Analysis		
СО	Course Outcome (CO) - Statement	
CO – 1	Model the power system under steady state operating condition	
CO – 2	Understand and apply iterative techniques for power flow analysis	
CO – 3	Model and carry out symmetrical short circuit studies on power system.	
CO – 4	Model and carry out unsymmetrical short circuit studies on power system	
CO – 5	Model and analyze stability problems in power system	
CO-6	Model and analyze the transient behaviour of power system when it is subjected to a fault	

Course Code: EE8551 Course Name: Power Electronics		
CO	Course outcome(CO) - Statements	
CO – 1	Summarize the fundamental concepts of power switching devices.	
CO – 2	Analyze single phase power converter circuits and their application.	
CO – 3	Analyze three phase power converter circuits and their application.	
CO – 4	Analyze switching regulator circuits and their application.	
CO – 5	Analyze various harmonic reduction techniques.	
CO - 6	Develop skills to simulate converter circuits using simulation software.	

Course Code: EE8551 Course Name: Microprocessors and Microcontrollers		
CO	Course outcome(CO) - Statements	
CO – 1	Describe the functional blocks of 8085 microprocessor	
CO – 2	Develop an simple assembly language program of 8085 microprocessor	
CO – 3	Explain the architecture of 8051 microcontroller	
CO – 4	Analyze the data transfer information through serial and parallel ports.	
CO – 5	illustrate how the different peripherals are interfaced with Microprocessor and microcontroller	
CO - 6	Develop a program for various application of 8051	

	Course Code: OAN551 Course Name: Sensors & Transducers	
CO – 1	Understand the concepts of measurement technology, classification of transducers & Expertise in various calibration techniques and signal types for sensors	
CO – 2	Understand the working of various motion, proximity and ranging sensors	
CO – 3	Learn the various sensors used to measure various physical parameters like force, magnetic and heading Sensors	
CO – 4	Study the basic principles of optical, pressure, temperature sensors & smart sensors	
CO – 5	Apply the various sensors in the Automotive and Mechatronics applications	
CO – 6	Implement the DAQ systems with different sensors for real time applications	

Course Code:EE8591 Course Name: Digital Signal Processing	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand the basic concepts of Signals and systems, their mathematical representation and quantization effects.
CO – 2	Ability to apply the Z transformation techniques on discrete time systems.
CO – 3	Ability to apply the concepts of the Discrete Fourier transformation techniques & their computation.
CO – 4	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO – 5	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO-6	Ability to understand the architecture and addressing modes of programmable digital signal processors.

Course Code: CS8392 Course Name: Object Oriented Proogramming	
CO	Course outcome(CO) - Statements
CO – 1	Develop Java programs using OOP principles
CO – 2	Develop Java programs using the concepts of inheritance and interfaces
CO – 3	Build Java applications using exceptions and I/O streams
CO – 4	Develop Java applications with threads and generics classes
CO – 5	Develop interactive Java programs using swings
CO-6	Develop an application based upon the concepts of Java.

Laboratory

Course Code:EE8511 Course Name: Control and Instrumentation Laboratory	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand control theory and apply them to electrical engineering
CO – 2	Ability to analyze the various types of converters
CO – 3	Ability to design compensators
CO – 4	Ability to understand the basic concepts of bridge networks
CO – 5	Ability to the basics of signal conditioning circuits
CO – 6	Ability to study the simulation packages.

Course Code:HS8581 Course Name: Professional Communication	
CO	Course outcome(CO) - Statements
CO – 1	Enhance the Employability and Career Skills of students
CO – 2	Orient the students towards grooming as a professional
CO – 3	Make them Employability Graduates
CO – 4	Develop their confidence and help them attend interviews successfully.

Course Code:CS8383 Course Name: Object Oriented Programming Lab	
CO	Course outcome(CO) - Statements
CO – 1	To build software development skills using java programming for real-world
CO – 2	To understand and apply the concepts of classes, packages, interfaces, array list, exception handling and file processing.
CO – 3	To develop applications using generic programming and event handling.

Seventh Semester

Course code : EE8701 Course Name: High voltage engineering	
CO	Course outcome(CO) - Statements
CO-1	Understand various types of over voltages experienced by the power system
CO-2	Understand and explain the breakdown mechanism of different types of dielectrics
CO-3	Explain the generation of High voltages and currents and apply the same for calculating the voltage to be generated for testing an apparatus of a particular rated voltage
CO-4	Understand various methods of HV measurements and identify the appropriate measuring system for various types of over voltages and currents
CO-5	Understand process of testing of various power system apparatus
CO-6	Understand the significance of insulation coordination and apply the same for fixing the BIL of an apparatus

Course code : EE8702 Course Name: POWER SYSTEM OPERATION AND CONTROL	
CO	Course outcome(CO) - Statements
CO-1	Ability to understand the day-to-day operation of electric power system.
CO-2	Ability to analyse the control actions to be implemented on the system to meet the minute-to-minute variation of system demand.
CO-3	Ability to understand the significance of power system operation and control.
CO-4	Ability to acquire knowledge on real power-frequency interaction.
CO-5	Ability to understand the reactive power-voltage interaction.
CO-6	Ability to design SCADA and its application for real time operation.

Course code: EE8703 Course Name: Renewable Energy Systems	
CO	Course outcome(CO) - Statements
CO-1	Understand the current energy scenario, environment aspect and renewable energy resources in India
CO-2	Understand the basic concept of wind energy conversion system and basics of grid Integration.
CO-3	Understand the solar energy conversion system and different types of solar plants.
CO-4	Experiment with stand alone and grid connected PV system.
CO-5	Explain the basic of renewable sources like Hydro, biomass and Geothermal
CO-6	Explain the basic of different ocean energy system and Fuel cell.

Course code: GE 8077 Course Name: Total Quality Management	
CO	Course outcome(CO) - Statements
CO-1	Understand the quality philosophies and customer focused managerial system
CO-2	Summarize the quality management principles
CO-3	Apply six sigma concept in manufacturing and service sector
CO-4	Determine the tools and techniques for quality improvement.
CO-5	Analyze standards and auditing system on implementation of TQM.
CO-6	Analyze standards for the operation of EMS.

Course code : GE8704 Course Name: Human Rights	
CO	Course outcome(CO) - Statements
CO-1	Understand the origin and detailed classification about the human rights
CO-2	Describe the evolutionary concepts and theories of human rights
CO-3	Develop the critical thinking and understanding of UN Laws and its agencies
CO-4	Understand the constitutional Provisions & Guarantees of Human rights in India
CO-5	Demonstrate the Human Rights Issues of disadvantaged people
CO-6	Apply the implementation of Human rights commission, Judiciary and social movements

	Course code : OCS752	
Course	Course Name: Introduction to C Programming	
CO	Course outcome(CO) - Statements	
CO-1	Develop algorithmic solutions to simple computational problems using basic constructs	
CO-2	Develop simple applications in C using Control Constructs	
CO-3	Design and implement applications using arrays	
CO-4	Represent data using string and string operations	
CO-5	Decompose a C program into functions and pointers	
CO-6	Represent and write program using structure and union	

Laboratory

Course code : EE8711 Course Name: Power System Simulation lab	
CO	Course outcome(CO) - Statements
CO-1	Model the Transmission line of power system
CO-2	Develop Bus Impedance and Admittance matrices for a network
CO-3	Analysis of Load flow by numerical methods
CO-4	Determine the fault current for the N bus system
CO-5	Examine the stability level of Single and Multi machine system
CO-6	Analyze the load frequency dynamics of multi area system

Course code : EE8712 Course Name: Comprehension Laboratory	
CO	Course outcome(CO) - Statements
CO-1	Explain Engineering fundamentals
CO-2	Apply mathematics to engineering problem
CO-3	Apply Engineering fundamentals to complex circuits
CO-4	Take part in discussion as a leader in diverse teams
CO-5	Extend knowledge on communication and presentation skills
CO-6	Develop managerial skills to establish start ups