

R.M.K. ENGINEERING COLLEGE RSM Nagar, Kavaraipettai – 601 206

Department of Electrical and Electronics Engineering

List of courses offered during 2021-22(Odd Semester)

Sl. No.	Semester	Theory/Practical	Course Code / Course Name
1	3	Theory	20MA301 – Transforms and Partial Differential
			Equations
2	3	Theory	20EE301 - Digital Logic Circuits
3	3	Theory	20EE302 – Electromagnetic Theory
4	3	Theory	20EE303 – DC machines and Transformers
5	3	Theory	20EE304– Linear Integrated circuits
6	3	Theory	20CS306 – Data structures and Algorithms
7	3	Practical	20EE311- Analog and Digital Electronics Laboratory
8	3	Practical	20EE312- DC Machines and Transformers
			Laboratory
9	3	Practical	20EE313-Mini Project
10	3	Practical	20CS 313-Aptitude and coding skills -1
11	5	Theory	EE8501 – Power System Analysis
12	5	Theory	EE8551- Microprocessor And Microcontroller
13	5	Theory	EE 8591 – Digital Signal Processing
14	5	Theory	EE8552– Power Electronics
15	5	Theory	CS 8392 – Object Oriented Programming
16	5	Theory	OAN551- Sensors and Transducers
17	5	Practical	EE8511- Control and Instrumentation Laboratory
18	5	Practical	HS8581 - Professional Communication
19	5	Practical	CS8383- Object Oriented Programming Laboratory
20	7	Theory	EE8701 – High voltage engineering
21	7	Theory	EE8702 – Power system operation and control
22	7	Theory	EE8703– Renewable Energy Systems
23	7	Theory	GE 8077- Total Quality management
24	7	Theory	OCS752 –Introduction to C programming
25	7	Practical	EE6711 - Power System Simulation Lab
26	7	Practical	EE6712- Comprehension Laboratory Lab

Course outcomes- 2021-2022 (odd semester)

Third Semester

Course (Course Code: 20MA301		
Course l	Course Name: Transforms And Partial Differential Equations		
CO	Course outcome(CO) - Statements		
CO – 1	Employ the Fourier series concept in Engineering Problems		
CO – 2	Identify the solution of Fourier transform in continuous time signals.		
CO – 3	Elucidate the difference equation using Z-transform.		
CO – 4	Compute the solutions of the partial differential equation.		
CO - 5	Utilize the Fourier series for heat and wave equations.		

	Course Code:20EE301 Course Name: Digital Logic Circuits		
CO	Course outcome(CO) - Statements		
CO – 1	Apply Boolean algebra and gate level minimization to design digital circuits.		
CO – 2	Design various combinational logic circuits		
CO – 3	Design and analyze the synchronous sequential logic circuits.		
CO – 4	Design and analyze the asynchronous sequential logic circuits and to get used to Verilog coding		
CO – 5	Apply ROM, PLA and PAL for developing combinational logic circuits.		
CO-6	Compare the operation and characteristics of various digital logic families.		

	Course Code: 20EE302 Course Name: Electro Magnetic Theory	
CO	Course outcome(CO) - Statements	
CO – 1	Understand the basic mathematical concepts related to electromagnetic vector fields.	
CO – 2	Understand the basic concepts about electrostatic fields, electrical potential, energy density and their applications	
CO – 3	Acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications	
CO – 4	Understand the different methods of emf generation and Maxwell's equations.	
CO – 5	Understand the basic concepts electromagnetic waves and characterizing parameters.	
	Understand and compute electromagnetic fields and apply them for design and analysisof electrical equipment and systems.	

Course Code: 20EE303		
Course Name: DC Machines and Transformers		
CO	Course Outcome(CO) - Statement	
CO - 1	Apply the laws governing the electromechanical energy conversion for singly and multiple excited systems.	
CO – 2	Explain the construction and working principle of DC machines.	
CO – 3	Interpret various characteristics of DC machines.	
CO – 4	Compute various performance parameters of the machine, by conducting suitable tests.	
	Draw the equivalent circuit of transformer and predetermine the efficiency and regulation.	
	Describe the working principle of auto transformer, three phase transformer with different types of connections.	

	Course Code:20EE304 Course Name: LINEAR INTEGRATED CIRCUITS		
CO	Course outcome(CO) - Statements		
CO – 1	Demonstrate the fabrication of IC's		
CO – 2	Analyze the performance characteristics of Op-Amp.		
CO – 3	Design Op-Amp based circuits for engineering applications		
CO – 4	Classify and comprehend the working principle of data converters.		
CO – 5	Illustrate the function of application specific IC's such as VCO, PLL and its applications.		
CO - 6	Classify the different voltage regulators using Op-Amp.		

Course Code: 20CS 305 Course Name: Data Structures and Algorithms

Course	Course Name: Data Structures and Algorithms
CO	
CO – 1	Explain abstract data types for linear data structures.
CO – 2	Apply the appropriate linear data structures to solve problems
CO – 3	Identify and use appropriate tree and graph data structures in problem solving.
CO – 4	:Critically analyze the various sorting and searching algorithms.
CO – 5	Solve and analyse problems using various algorithm design techniques

Laboratory

20EE311	Analog and Digital Electronics Laboratory
CO	Course outcome(CO) -
	Statements
CO – 1	Interpret and understand the characteristics of semiconductor devices
CO – 2	Demonstrate different configurations of transistors
CO – 3	Employ voltage-controlled transistor for generating saw tooth waveform
CO – 4	Design and implement combinational logic circuits and sequential logic circuits
CO – 5	Demonstrate the experimental implementation of differential amplifiers and test
	operational amplifier based linear and nonlinear systems
CO – 6	Compare the working of multi vibrators using op-amp, IC 555 timer and analyze
	working of voltage regulator and PLL using LM317 and NE/ SE 566 IC

Course code :20 EE 312 Course Name: DC machines and Transformers Laboratory	
CO	Course outcome(CO) – Statements
CO – 1	Construct the circuit with appropriate connections for the given DC machine/transformer
CO – 2	Experimentally determine the characteristics of different types of DC machines
CO – 3	Demonstrate the speed control techniques for a DC motor for industrial applications.
CO – 4	Identify suitable methods for testing of transformer and DC machines.
CO – 5	Predetermine the performance parameters of transformers and DC motor
CO – 6	Understand DC motor starters and 3-phase transformer connection

Course c	Course code :20 EE 313	
Course N	Course Name: Mini Project	
CO	Course outcome(CO) – Statements	
CO – 1	Interpret literature with the purpose of formulating a project proposal	
CO – 2	Solve the identified problem with the modern technology and innovative thinking,	
	giving priority to real life problem.	
CO – 3	Identify the key stages in development of the project	
CO – 4	Propose to work as a team and to focus on getting a working project done	
	within astipulated period of time	
CO – 5	Develop a prototype or a working model.	
CO – 6	Discuss and report effectively project related activities and findings	

Course code : 20CS313 Course Name: Aptitude and Coding Skills -1	
CO	Course outcome(CO) – Statements
CO – 1	Develop vocabulary for effective communication and reading skills.al
CO – 2	Build the logical reasoning and quantitative skills.
CO – 3	Develop error correction and debugging skills in programming.

Fifth Semester

Course Co	Course Code: EE8501	
Course Name: Power System Analysis		
CO	Course Outcome (CO) - Statement	
CO – 1	Model the power system under steady state operating condition	
CO – 2	Understand and apply iterative techniques for power flow analysis	
CO – 3	Model and carry out symmetrical short circuit studies on power system.	
CO – 4	Model and carry out unsymmetrical short circuit studies on power system	
CO – 5	Model and analyze stability problems in power system	
CO-6	Model and analyze the transient behaviour of power system when it is subjected to a fault	

Course Code: EE8551 Course Name: Power Electronics	
CO	Course outcome(CO) - Statements
CO – 1	Summarize the fundamental concepts of power switching devices.
CO – 2	Analyze single phase power converter circuits and their application.
CO – 3	Analyze three phase power converter circuits and their application.
CO – 4	Analyze switching regulator circuits and their application.
CO – 5	Analyze various harmonic reduction techniques.
CO - 6	Develop skills to simulate converter circuits using simulation software.

Course Code: EE8551 Course Name: Microprocessors and Microcontrollers	
CO	Course outcome(CO) - Statements
CO – 1	Describe the functional blocks of 8085 microprocessor
CO – 2	Develop an simple assembly language program of 8085 microprocessor
CO – 3	Explain the architecture of 8051 microcontroller
CO – 4	Analyze the data transfer information through serial and parallel ports.
CO – 5	illustrate how the different peripherals are interfaced with Microprocessor and microcontroller
CO - 6	Develop a program for various application of 8051

	Course Code: OAN551 Course Name: Sensors & Transducers	
CO – 1	Understand the concepts of measurement technology, classification of transducers & Expertise in various calibration techniques and signal types for sensors	
CO – 2	Understand the working of various motion, proximity and ranging sensors	
CO – 3	Learn the various sensors used to measure various physical parameters like force, magnetic and heading Sensors	
CO – 4	Study the basic principles of optical, pressure, temperature sensors & smart sensors	
CO – 5	Apply the various sensors in the Automotive and Mechatronics applications	
CO – 6	Implement the DAQ systems with different sensors for real time applications	

Course Code:EE8591	
Course Name: Digital Signal Processing	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand the basic concepts of Signals and systems, their mathematical representation and quantization effects.
CO – 2	Ability to apply the Z transformation techniques on discrete time systems.
CO – 3	Ability to apply the concepts of the Discrete Fourier transformation techniques & their computation.
CO – 4	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO – 5	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO-6	Ability to understand the architecture and addressing modes of programmable digital signal processors.

Course Code: CS8392 Course Name: Object Oriented Programming	
CO	Course outcome(CO) - Statements
CO – 1	Develop Java programs using OOP principles
CO – 2	Develop Java programs using the concepts of inheritance and interfaces
CO – 3	Build Java applications using exceptions and I/O streams
CO – 4	Develop Java applications with threads and generics classes
CO – 5	Develop interactive Java programs using swings
CO-6	Develop an application based upon the concepts of Java.

Laboratory

Course Code:EE8511 Course Name: Control and Instrumentation Laboratory	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand control theory and apply them to electrical engineering
CO – 2	Ability to analyze the various types of converters
CO – 3	Ability to design compensators
CO – 4	Ability to understand the basic concepts of bridge networks
CO – 5	Ability to the basics of signal conditioning circuits
CO – 6	Ability to study the simulation packages.

	Course Code:HS8581 Course Name: Professional Communication	
CO	Course outcome(CO) - Statements	
CO – 1	Enhance the Employability and Career Skills of students	
CO – 2	Orient the students towards grooming as a professional	
CO – 3	Make them Employability Graduates	
CO – 4	Develop their confidence and help them attend interviews successfully.	

Course Code: CS8383 Course Name: Object Oriented Programming Lab	
CO	Course outcome(CO) - Statements
CO – 1	To build software development skills using java programming for real-world
CO – 2	To understand and apply the concepts of classes, packages, interfaces, array list, exception handling and file processing.
CO – 3	To develop applications using generic programming and event handling.

Seventh Semester

Course of	Course code : EE8701	
Course Name: High voltage engineering		
CO	Course outcome(CO) - Statements	
CO-1	Understand various types of over voltages experienced by the power system	
CO-2	Understand and explain the breakdown mechanism of different types of dielectrics	
CO-3	Explain the generation of High voltages and currents and apply the same for calculating the voltage to be generated for testing an apparatus of a particular rated voltage	
CO-4	Understand various methods of HV measurements and identify the appropriate measuring system for various types of over voltages and currents	
CO-5	Understand process of testing of various power system apparatus	
CO-6	Understand the significance of insulation coordination and apply the same for fixing the BIL of an apparatus	

Course code : EE8702 Course Name: POWER SYSTEM OPERATION AND CONTROL	
CO	Course outcome(CO) - Statements
CO-1	Ability to understand the day-to-day operation of electric power system.
CO-2	Ability to analyze the control actions to be implemented on the system to meet the minute-to-minute variation of system demand.
CO-3	Ability to understand the significance of power system operation and control.
CO-4	Ability to acquire knowledge on real power-frequency interaction.
CO-5	Ability to understand the reactive power-voltage interaction.
CO-6	Ability to design SCADA and its application for real time operation.

Course	Course code : EE8703 Course Name: Renewable Energy Systems	
CO	Course outcome(CO) - Statements	
CO-1	Understand the current energy scenario, environment aspect and renewable energy resources in India	
CO-2	Understand the basic concept of wind energy conversion system and basics of grid Integration.	
CO-3	Understand the solar energy conversion system and different types of solar plants.	
CO-4	Experiment with stand alone and grid connected PV system.	
CO-5	Explain the basic of renewable sources like Hydro, biomass and Geothermal	
CO-6	Explain the basic of different ocean energy system and Fuel cell.	

Course code: GE 8077 Course Name: Total Quality Management	
CO	Course outcome(CO) - Statements
CO-1	Understand the quality philosophies and customer focused managerial system
CO-2	Summarize the quality management principles
CO-3	Apply six sigma concept in manufacturing and service sector
CO-4	Determine the tools and techniques for quality improvement.
CO-5	Analyze standards and auditing system on implementation of TQM.
CO-6	Analyze standards for the operation of EMS.

Course	Course code : GE8704		
Course Name: Human Rights			
CO	Course outcome(CO) - Statements		
CO-1	Understand the origin and detailed classification about the human rights		
CO-2	Describe the evolutionary concepts and theories of human rights		
CO-3	Develop the critical thinking and understanding of UN Laws and its agencies		
CO-4	Understand the constitutional Provisions & Guarantees of Human rights in India		
CO-5	Demonstrate the Human Rights Issues of disadvantaged people		
CO-6	Apply the implementation of Human rights commission, Judiciary and social		
	movements		

Course code : OCS752		
Course Name: Introduction to C Programming		
CO	Course outcome(CO) - Statements	
CO-1	Develop algorithmic solutions to simple computational problems using basic constructs	
CO-2	Develop simple applications in C using Control Constructs	
CO-3	Design and implement applications using arrays	
CO-4	Represent data using string and string operations	
CO-5	Decompose a C program into functions and pointers	
CO-6	Represent and write program using structure and union	

Laboratory

Course code : EE8711 Course Name: Power System Simulation lab		
CO	Course outcome(CO) - Statements	
CO-1	Model the Transmission line of power system	
CO-2	Develop Bus Impedance and Admittance matrices for a network	
CO-3	Analysis of Load flow by numerical methods	
CO-4	Determine the fault current for the N bus system	
CO-5	Examine the stability level of Single and Multi machine system	
CO-6	Analyze the load frequency dynamics of multi area system	

Course code : EE8712 Course Name: Comprehension Laboratory		
CO	Course outcome(CO) - Statements	
CO-1	Explain Engineering fundamentals	
CO-2	Apply mathematics to engineering problem	
CO-3	Apply Engineering fundamentals to complex circuits	
CO-4	Take part in discussion as a leader in diverse teams	
CO-5	Extend knowledge on communication and presentation skills	
CO-6	Develop managerial skills to establish start ups	