

R.M.K. ENGINEERING COLLEGE

R.S.M Nagar, Kavaraipettai, Gummidipoondi Taluk, Thiruvallur District, Tamil Nadu- 601206 Affiliated to Anna University, Chennai / Approved by AICTE, New Delhi/Accredited by NAAC with A+ Grade An ISO 21001:2018 Certified Institution / All the Eligible UG Programs are accredited by NBA, New Delhi

Department of Computer Science and Design

Course Outcomes

4 th (EVEN) Semester 2023-2024

SI. No.	Semester	Theory/ Practical	Course Code / Course Name
1	4	Theory with Practical	Probability and Statistics
2	4	Theory with Practical	Web Development Frameworks
3	4	Theory with Practical	Design and analysis of algorithms
4	4	Theory with Practical	Human Computer Interaction
5	4	Theory with Practical	Design Programming
6	4	Theory with Practical	Professional Elective I(Augmented and Virtual Reality)
7	4	Practical	Product Development Lab - 4
8	4	Practical	Aptitude and Coding Skills II
9	4	Practical	Mini Project and Design Thinking Lab
10	4	Practical	Yoga/ Personality Development (Non Credit)
11	4	Theory with Practical(Honours Degree)	Data Science Using Python

SI. No	Semester	Theory/Practical/ Honour Degree/ Minor Degree	Course Code / Course Name
1	6	Theory with practical	20CS601-Compiler Design (Lab integrated)
2	6	Theory with practical	20CD601- Computer Networks (Lab Integrated)
3	6	Theory with practical	20CS932- Mobile Computing (Lab Integrated)
4	6	Theory with practical	20CD904- UI/UX Design (Lab Integrated)
5	6	Theory with practical	20CS920- Block chain Technologies
6	6	Practical	20CS614- Advanced Aptitude and Coding

RMKEC/CSD

			Skills-II
7	6	Practical	20CD612- Internship
8	6	Honour Degree	20AI501- Data Exploration and Visualization (Lab Integrated)
9	6	Honour Degree	20AI703- Deep Learning Techniques (Lab Integrated)
10	6	Minor Degree	20EC907-Sensors and Actuator Devices
11	6	Minor Degree	20EC959-Image and Video Analytics

EVEN Semester 2023-2024

4rd Semester – B.E. Computer Science and Design

22MA401-PROBABILITY AND STATISTICS

Cos Course Outcome: Upon completion of the course, the students will be able to:CO1: Calculate the statistical measures of standard distributions

CO2: Compute the correlation & regression for two dimensional random variables.

CO3: Apply the concept of testing the hypothesis.

CO4: Implement the concept of analysis of variance for various experimental designs.

CO5: Demonstrate the control charts for variables and attributes

22CS402- WEB DEVELOPMENT FRAMEWORKS

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Write Web API/RESTful API application programming interface to communicate with Spring boot as a serverside technology

CO2: Build single page applications using REACT as a reusable UI component technology as client side technology

CO3: Build applications using Node Js as serverside technologies

CO4: Able to develop a web application using latest Angular Framework

CO5: Apply various Angular features including directives, components, and services.

22CD401- HUMAN COMPUTER INTERACTION

Cos Course Outcome: Upon completion of the course, the students will be able
to:
CO1: Enumerate the basic concepts of human, computer interactions
CO2: Inspect software design process in human computer interaction
CO3: Examine various models and theories related to human computer interaction
CO4: Build meaningful user interface
CO5: Establish the different levels of communication across the application stakeholders

22CS303- DESIGN AND ANALYSIS OF ALGORITHMS

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Solve mathematically the efficiency of recursive and non-recursive algorithmsCO2: Design and Analyse the efficiency of divide and conquer and transform and conquer algorithmic techniques

CO3: Implement and analyse the problems using dynamic programming

CO4: Solve the problems using and greedy technique and iterative improvement technique for optimization

CO5: Compute the limitations of algorithmic power and solve the problems using backtracking and branch and bound technique

22CD402- DESIGN PROGRAMMING

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Learn about Blender interface

CO2: Understand Texture Mapping and Rendering

CO3: Analyse Text to Mesh Object and Curve conversion

CO4: Know the scripting fundamentals

CO5:Understand accessing game objects

Professional Elective I

22CD918- AUGMENTED AND VIRTUAL REALITY

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Understand Augmented Reality.

CO2: Explore different input and output devices used in Virtual Reality system.

CO3: Model the VR system

CO4: To learn about Google Toolkit's and Scene Graph

CO5: Apply VR in various fields

Honours Degree in Artificial Intelligence and Data science

22AI302 – DATA SCIENCE USING PYTHON

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Explain the fundamentals of data science.

CO2: Experiment python libraries for data science.

CO3: Apply and implement basic classification algorithms

RMKEC/CSD

Laboratory

22ME411-PRODUCT DEVELOPMENT LAB - 4

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO 1: Identify the real-time problems through literature

CO 2: Develop feasible solutions for the problems.

CO 3: Evaluate the methods to develop solutions to the problem.

CO 4: Analyze the business opportunities for a new product.

CO 5: Prepare a detailed report for the experimental dissemination.

22CS411- APTITUDE AND CODING SKILLS – II

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Develop advanced vocabulary for effective communication and reading skills.

CO2: Build an enhanced level of logical reasoning and quantitative skills.

CO3: Develop error correction and debugging skills in programming.

CO4: Apply data structures and algorithms in problem solving.

22CS412- MINI PROJECT AND DESIGN THINKING LAB

Cos Course Outcome: Upon completion of the course, the students will be able to:

CO1: Understand the design thinking process and able to visualize the problem

CO2: Analyse the problem using innovation tools

CO3: Design a prototype for an identified problem solution

CO4: Testing and evaluate strategies in improving the solution

CO5: Apply the innovation ideas to real-world applications

6th Semester – B.E. Computer Science and Design

20CS601- COMPILER DESIGN (LAB INTEGRATED)

COs Course Outcome: The students, after the completion of the course, the students will be

CO1 : Understand the different phases of compiler

CO2 : Perform tokenization and parsing for programs

CO3: Generate intermediate code representation for any source programs

CO4 : Analyze the different techniques used for assembly code generation

CO5 : Implement code optimization techniques with simple code generators

20CD601- COMPUTER NETWORKS (LAB INTEGRATED)

COs Course Outcome: The students, after the completion of the course, are expected to

CO1: Understand the fundamental concepts of computer networks and physical layer.

CO2: Gain knowledge of various protocols and techniques used in the data link layer.

CO3: Learn the network layer services and network layer protocols.

CO4: Understand the various protocols used in the transport layer.

CO5 : Analyze the various application layer protocols.

20CS932- MOBILE COMPUTING (LAB INTEGRATED)

COs	Course Outcome: The students, after the completion of the course, are
	expected to

- **CO1** : Explain the basics of mobile computing and multiplexing techniques.
- CO2: Illustrate the generations of telecommunication systems in wireless networks.
- CO3: Determine the functionality of MAC, network layer and identify a routing protocol for a given Adhoc network.

CO4: Explain the functionality of mobile Transport and Application layers.

CO5: Understand the usage of different mobile platforms and implement applications.

20CD904 - UI/UX DESIGN (LAB INTEGRATED)

COs Course Outcome: The students, after the completion of the course, are expected to

CO1 : Understand the principles of User Interface (UI) Design in order to design with intention

CO2: Learn the effective User eXperience (UX) and the psychology behind user decision making.

CO3: Understand the importance of UX process and user Psychology.

CO4: Elucidate the implications for designing web application with multimedia effects.

CO5 : Create Wireframe and Prototype.

20CS920- BLOCK CHAIN TECHNOLOGIES

COs Course Outcome: The students, after the completion of the course, are expected to

CO1: Understand the technology components of Blockchain and how it works behind the scenes.

CO2: Understand the Bitcoin and its limitations by comparing with other alternative coins.

CO3: Develop deep understanding of the Ethereum model, its consensus model, code execution.

CO4: Understand the architectural components of a Hyperledger and its developmen framework.

CO5: Explore the alternative blockchains and its emerging trends.

<u>Laboratory</u>

	20CS614- ADVANCED APTITUDE AND CODING SKILLS - II
COs	Course Outcome: The students, after the completion of the course, are expected to
CO1:	Develop advanced vocabulary for effective communication and reading skills.
CO2:	Build an enhanced level of logical reasoning and quantitative skills.
CO3:	Develop error correction and debugging skills in programming.

CO4: Develop error correction and debugging skills in programming.

Honour Degree in Artificial Intelligence and Data science

20AI501-DATA EXPLORATION AND VISUALIZATION (LAB INTEGRATED)

COs Course Outcome: The students, after the completion of the course, are expected to

CO1: Explain the overview of exploratory data analysis and phases involved in data analytics.

CO2: Explore in-depth knowledge in EDA techniques.

CO3: Apply the visualization techniques in data.

CO4: Describe the methods of time series analysis.

CO5: Represent the data in tree and hierarchical formats.

20AI703-DEEP LEARNING TECHNIQUES (LAB INTEGRATED)

COs Course Outcome: The students, after the completion of the course, are expected to

CO1: Explain the basics of deep neural networks.

CO2: Describe advanced deep learning models.

CO3: Understand and Implement CNN and RNN architectures of deep neural networks.

CO4: Learn autoencoders in neural networks.

CO5 : Apply deep generative models to solve real world problems.

Minor Degree in Internet of Things

20EC907-SENSORS AND ACTUATOR DEVICES

- COs Course Outcome: The students, after the completion of the course, are expected to
- **CO1** : Build schematic for IoT solutions with sensors.

CO2: Design and develop IoT based sensor systems.

CO3: Select the appropriate sensors for various industrial applications

CO4: Evaluate the wireless sensor technologies for IoT.

CO5 : Design and develop an IoT Prototype project

CO6 : Identify the IoT networking components with respect to sensors.

20EC959-IMAGE AND VIDEO ANALYTICS

COs	Course Outcome: The students, after the completion of the course, are
	expected to

- CO1: Understand the requirements of image processing
- CO2: Illustrate the principles and techniques of digital image in applications related to digital imaging system.
- **CO3**: Demonstrate the image recognition and motion recognition.

CO4: Understand the fundamentals of digital video processing.

CO5 : Illustrate the motion estimation, segmentation and modelling.

CO6: Design and Analysis of video processing in application.